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1. Introduction and summary

In the present paper we study the mixing of non-BPS giant gravitons in N=4 SYM beyond

the leading order in the ’t Hooft coupling. We pay special attention to open-string like

operators coupled to maximal giant gravitons built out of two of the three complex scalars

Z,W at two loop order. We show by an explicit computation that the two loop mixing of

such operators can be described within the paradigm of open spin chains and we construct

the two loop open spin chain. We thus extend the work of Berenstein and Vazquez [4, 5]

who had shown that the one loop mixing of non-BPS giant gravitons can be described by

integrable open spin chains. Our analysis suggests that although the spin chain paragigm

holds beyond the leading order in perturbation theory, the two loop open spin chain is not

integrable by Bethe ansatz techniques.

The discovery of integrability in N=4 SYM [1] has lead to various remarkable in-

sights in the present day understanding of N=4 SYM and many of its less and non-

supersymmetric cousins. The fact that in ’t Hooft’s large N limit the mixing of single

trace operators of the gauge theory can be studied and the spectrum of anomalous di-

mensions of the gauge theory computed by diagonalizing an associated one dimensional

quantum spin chain, which, to the extent that it has been possible to check by explicit

computations, appears to be integrable opens up the possibility of detailed higher loop

studies of the gauge theory. Integrability in superconformal Yang-Mills theory was first

discovered at the one loop level in the seminal paper of Minahan and Zarembo [1] who

showed that the mixing of single trace operators constructed out of the six (real) scalars

of the gauge theory is described by an integrable SO(6) spin chain. This result has subse-

quently been generalized and supersymmetrized to incorporate the mixing of single trace
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operators involving any of the SYM fields at the one loop level [2]. At this level, the mixing

is described by a supersymmetric closed spin chain, which nonetheless is integrable.

The status of integrability, beyond the one loop order is also very promising. Higher

loop integrability in the gauge theory, which was first glimpsed in [3] has since been under-

stood in much grater detail. It was shown by Staudacher [8] that higher loop integrability;

at least in some closed sub-sectors of operator mixing such as the su(2), sl(2) and the

su(1|1) sectors can be made manifest as one can write down a set of Bethe equations

whose solutions correctly determine the spectra of anomalous dimensions of the gauge

theory in these sectors. The insights gained from the Bethe equations for these closed

’two-component’ sectors have been utilized by Beisert and Staudacher in [6] where a re-

markable all loop Bethe ansatz for the complete gauge theory has been proposed. Assuming

the correctness of this Bethe ansatz, one is lead to the extremely pleasant situation where

the all-loop large N spectrum of anomalous dimensions of all single trace operators of

N = 4 SYM is described by an underlying integrable quantum spin chain.

Apart from single trace operators, the gauge theory also contains baryonic operators,

whose engineering dimensions are of order N . These operators are constructed out of

determinants and sub-determinants rather than traces [13, 14]. Such baryonic operators

are of particular interest in the context of the AdS/CFT correspondence as they provide

one with the gauge theory dual of non-perturbative D brane excitations i.e the so called

giant gravitons of the dual string theory [15, 16, 18, 17, 19]. The simplest example of a

giant graviton is provided by a determinant operator constructed out of one of the three

complex scalar fields Z

εi1···iN εj1···jN
Zj1

i1
· · ·ZjN

iN
. (1.1)

This operator being built out of only one of the complex scalars is a BPS operator and

does not undergo renormalization. The gravitational interpretation of this operator is

that of a maximal D3-brane that saturates the angular momentum bound [16 – 20]. Non-

BPS excitations in the background of a giant graviton would correspond to open string

excitations in the presence of the brane. The gauge theory provides us with a simple

enough prescription for constructing the boundary theory dual of the open string degrees

of freedom. The open string ending on the D3 brane can be built by replacing one of the

Zs in the determinant with a matrix product of local super-Yang-Mills fields [21, 4, 5, 22].

A typical non-BPS su(2) operator would look like

εi1···iN εj1···jN
Zj1

i1
· · ·Z

jN−1

iN−1
(WWZZZWZWZ · · ·ZZWZW )jN

iN
. (1.2)

Such operators, by virtue of not being protected by any non-renormalization theorems,

would undergo operator mixing and hence have non-zero anomalous dimensions. The

spectrum of anomalous dimensions of such operators gives one the gauge theory dual of the

open string spectrum. Computing the spectrum of anomalous dimensions of such non-BPS

maximal giants is the problem that we shall concern ourselves with in the present paper.

As with various other issues concerning the AdS/CFT correspondence, it is important to

analyze the problem in the large N limit before addressing the problem in all its generality.

As it stands, it is not at all obvious that the computation of anomalous dimensions

of giant graviton like operators simplifies in any way in the large N limit. Processes that
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naively appear to be sub-leading order in 1
N

may in fact turn out to be of order one

as various 1
N

suppressions may be compensated for by the O(N) size of the operators.

However, we shall be able to demonstrate explicitly that, at least at the two loop level, the

anomalous dimensions of non-BPS giant gravitons can be studied within the framework of

the 1
N

expansion, and the task of computing their spectrum can be reduced to the problem

of diagonalizing an associated quantum spin chain.

From the studies of the dynamics of non-BPS giant gravitons of the gauge theory

performed so far, the status of integrability is ambiguous. It was first shown in [21] that,

at least at the one loop level, the anomalous dimensions of non-BPS giants are not of order

one i.e although these operators have large bare conformal dimensions, their anomalous

dimensions are small. Subsequently, more detailed one-loop analysis of non-BPS operators

involving all six (real) SYM scalars was carried out in [4]. In that paper, one loop mixing

of operators such as

εi1···iN εj1···jN
Zj1

i1
· · ·Z

jN−1

iN−1

(

φi1 · · ·φil
)jN

iN
, (1.3)

where φis can be any of the six scalars, was carried out. It was shown that the computation

of one-loop anomalous dimensions of such operators can be reduced to the problem of

diagonalizing the Minahan-Zarembo so(6) quantum spin chain, but with open boundary

conditions. The open boundary conditions emerge naturally in the problem as the operators

of interest are not traces, and the interaction of the scalar fields that form the chain(the

matrix product of the φ fields in the above operator) with the Z fields forming the brane

lead to the open boundary conditions. The outcome of the analysis performed in [4] was the

discovery that the open boundary conditions do not spoil the integrability of the Minahan-

Zarembo spin chain. It was shown in that paper that the bulk and boundary S matrices

for the relevant so(6) spin chain satisfy the Yang-Baxter and reflection algebras: thus a

necessary condition for integrability is indeed satisfied at the one-loop level. However,

already at the one loop level, the situation is different if one considers non-BPS non-

maximal giants, which correspond to operators such as

ε
i1···ikik+1···iN
i1···ikjk+1···jN

Z
jk+1

ik+1
· · ·Z

jN−1

iN−1
(w)jN

iN
, (1.4)

with k > 1. w stands for the matrix product formed out of two complex SYM scalars

i.e. it is the su(2) spin chain. It was shown in [5] that the mixing of non-maximal giant

gravitons of the above type formed out of two complex scalars can be formulated in the

language of quantum spin chains, at least at the one loop level. The spin chain is nothing

but the celebrated Heisenberg spin half model, but the boundary conditions generated by

non-maximal giants are of a novel sort. The boundary interactions result in the spin chain

being a dynamical one, i.e, the boundary interactions lead to fluctuations in the length of

the chain. Though, it was possible to find the exact ground state of the spin chain in [5]

whether or not the chain is integrable is still an open issue1. Thus, integrability in N=4

SYM is not at all obvious once one ventures outside the realm of single trace operators.

1The dynamical nature of the spin chain does not by itself rule out integrability. Even in the sector

of closed chains e.g in the closed su(2|3) sector dynamical chains do appear [11] and they are known to

be integrable [12]. However, it is not known if the dynamical spin chains of interest in the sector of giant

gravitons of the gauge theory enjoy similar integrable features.
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Given this status quo, it is probably a reasonable goal to try and examine whether

the spin chain interpretation of mixing of non-BPS giant gravitons holds beyond the one

loop level and if it does, it is of course interesting to investigate whether or not they can

be diagonalized by Bethe ansatz techniques that have been so successful in the study of

higher loop integrability of single trace/closed spin chain operators. In the present paper

we shall take a step in that direction. The organization of the paper and the principal

results reported in various sections are as follows.

In the next section we shall establish that the dynamics of non-BPS excitations in

the background of a maximal giant graviton can be studied within the paradigm of open

spin chains at the two loop level. The analysis will be performed in two steps. We shall

first resolve various combinatorial issues to work out the proper normalizations for various

determinant and sub-determinant like operators. The guiding principle used in this exercise

is that the various operators are required to have a free field two point function of order one.

Once the combinatorial issues are settled, we shall proceed to study the mixing of these

non-BPS giant gravitons. To that end we shall use the results of Beisert et al [3] where the

two loop dilatation operator for the su(2) sector of the gauge theory was computed at finite

N . Isolating the O(1) part of the result of the action of the finite N dilatation operator on

the properly normalized operators gives us the details of mixing of non-BPS giants at large

N . We shall be able to show that at the two loop level non-BPS giants of the type(1.2)

are closed under action of the dilatation operator. We shall also be able to interpret the

process of mixing of such operators within the language of open spin chains; the open spin

chain being the matrix product of various su(2) SYM fields that are contracted with the

last pair of indices of the epsilon tensors in(1.2). We shall also be able to show that no new

boundary conditions are generated at the two loop level. Thus the boundary conditions

are the same as the ones discovered by Berenstein and collaborators in [4], which amount

to the fact that the first and the last fields in the open chain(1.2) cannot be Zs. These

boundary conditions emerge out of the realization that if a Z field is placed at either end

of the open spin chain, then the operator factorizes into a determinant and a trace, which

is lower order in 1
N

. This fact may most easily be seen by going to a basis in which Z is

diagonal. Thus the boundary conditions for the problem at hand are not exactly the so

called free boundary conditions, which would have corresponded to the case of the first

and last spins being allowed to take any one of the two allowed values, but they are very

similar.

Having a spin chain interpretation of the mixing of non-BPS giants at two loops is a

gratifying outcome. The obvious question that comes to mind is whether or not the two

loop spin chain Hamiltonian can be diagonalized by an appropriate Bethe ansatz. That,

unfortunately does not appear to be the case. Before indulging in further details, it is

probably worth emphasizing that even in the absence of integrability in the sense of the

absence of a Bethe ansatz and a factorized S matrix, the fact that the two loop operator

mixing can be described by open spin chains is a major simplification in the study of the

open string/giant graviton sector of the gauge theory. That is so because, as far as the

computation of the spectrum of anomalous dimensions of operators that correspond to

spin chains of finite length is concerned, the spin chain interpretation always reduces the
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problem to the process of diagonalization of a finite dimensional matrix, which can be

achieved numerically. However, the lack of a two loop Bethe ansatz is a major drawback

if one intends to study long coherent open string states constructed from the gauge theory

and compare with the world-sheet analysis as was done in [21].

Having established the open spin chain description of the mixing of non-BPS giants, we

shall devote the rest of the paper to a careful analysis of the integrability or the lack thereof

of the two loop open spin chain. Although integrability of a given spin chain, even in a per-

turbative sense, is in general quite hard to establish, we shall take the pragmatic approach

of Staudacher [8] and declare the spin chain to be integrable if one can successfully write

down a set of Bethe equations for the spin chain. In the approach pioneered in [8], the basic

idea was to study the two magnon scattering problem, and find the appropriate two body

S matrix. Assuming factorized scattering, the two solution of the two body problem was

then used to find the exact (in a perturbative sense) eigenstates, i.e the Bethe eigenstates

of the general many body problem. An explicit construction of the scattering eigenstates of

the su(2) dilatation operator and the corresponding Bethe equations, accurate to the third

order in the ’t Hooft coupling was also worked out by Staudacher in the same paper [8].

As far as the closed chains of the su(2) sector is concerned, the main complexity lay in

the construction of the two magnon scattering matrix and the Bethe equations describing

the two magnon scattering. As long as there is no global obstruction to the construction

of the two particle S matrix, one could assume factorized scattering and lift the solution

of the two body problem to the case of an arbitrary number of magnons. One could then

carry out further checks to ascertain that the solutions of the general many body problem

do in fact reproduce the correct spectrum. In the su(2) sector, for instance, the spectrum

obtained from the Bethe ansatz [8] does match the spectrum obtained from the numerical

lattice simulations of the corresponding spin chain [10]. In a sense, the notion of integrabil-

ity employed in this approach is the factorized nature of the scattering matrices for three

or more magnon scattering processes.

However, in the presence of boundaries, there is a second notion of three body scatter-

ing, which is present even in the analysis of the two magnon problem. The presence of the

boundary can lead to three body processes even if one is dealing with the dynamics of two

magnons. Integrability in the presence of boundaries hence implies that these three body

interactions take place in a way that is compatible with the separation of the scattering

matrix into a bulk and a boundary part. Thus, even from the point of view of Stau-

dacher’s PABA apprach, the criterion of integrability is more stringent in the presence of

non-periodic boundary conditions. We shall be able to demonstrate, in an explicit fashion

that such three body processes, though absent at the one loop level, do start contributing

at O(λ2). The algorithm that we employ to do this is the following one. We compute

the bulk and boundary S matrices from the study of the asymptotics of the two magnon

problem. In other words, the study of the magnons scattering off each other far away from

the boundaries gives us the bulk two body S matrix of the spin chain and the situation

when one of the magnons scatters off the boundary (while being far enough away from the

other magnon) gives us the boundary S matrix. From the knowledge of these scattering

matrices, we can write down a set of Bethe equations. We then proceed to show that
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these Bethe equations follow from the requirement for a general ansatz for the two particle

wave function to be an eigenstate of the spin chain Hamiltonian. Finally we demonstrate

explicitly that the two body wave function that leads to the Bethe equations is not an

eigenstate of the Hamiltonian. We interpret this to be evidence in favor of a breakdown of

higher loop integrability in the open string sector of the gauge theory. Though the Bethe

equations do not appear to be solutions of the two body Schrodinger equations, we can

nevertheless utilize them to construct some exact eigenfunctions of the Hamiltonian. This

construction is discussed at the very end of the third section.

From the point of view of the spin chain, we can also understand the potential break-

down of integrability in another way. The two loop dilatation operator that describes the

mixing of non-BPS giants is the same as the one for closed chains as long as one stays away

from the boundaries, i.e the bulk dilatation operator can be embedded in the Inozemtsev

spin chain [23]. To the best of our knowledge, the only boundary conditions, other than

the periodic ones, that are compatible with the integrability of the Inozemtsev chain are

provided by reflective boundaries (see for example [24, 25]). The boundary conditions that

emerge out of the gauge theory analysis are not of that type, and as mentioned earlier, they

are similar in spirit to the free boundary conditions. The Inozemtsev chain is not known

to be integrable in the presence of free boundary conditions, and hence it is perhaps not

surprising from this point of view that the two loop dilatation operator in question in the

present paper does not appear to admit a consistent Bethe ansatz.

2. Various operators

The generic class of operators of interest to us are the ones that describe non-BPS ex-

citations in the background of a maximal giant graviton. As mentioned earlier in the

introduction, maximal BPS giants are protected operators formed out of determinants of a

single complex scalar Z, and they define the vacuum state for the sector of interest to us.

|0 >= εj1···jN

i1···iN Zi1
j1
· · ·ZiN

jN
(2.1)

It is understood that

εj1···jN

i1···iN = εi1···iN εj1···jN . (2.2)

A typical open string excitation corresponds to a state such as

|k;Zm;w1, . . . wN−k−m >= ε
i1···ikik+1···iN
i1···ikjk+1···jN

Z
jk+1

ik+1
· · ·Z

jk+m

ik+m
(w1)

jk+m+1

ik+m+1
· · · (wN−k−m)jN

iN
(2.3)

The wis are matrix products of local Yang-Mills fields i.e they are the open string degrees

of freedom. In the above operator, the indices of the epsilon tensor (k of them) which are

contracted with each other indicate the departure from the maximal R caharge bound,

while, replacing a certain number of the Z fields with the open strings, wi, signal the

departure form the BPS bound. As has been argued and demonstrated in [22], operators

of the above kind do satisfy orthonormality conditions and it is possible to build a large

N Hilbert space using these open string degrees of freedom once the states are properly

normalized. Rather than review the detailed combinatorial work presented in [22], which
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deals with the generic class of operators to which the above example belongs we shall focus

on the particular operators of interest to us. We shall be interested in operators of the

type

|ZN−1, w > (2.4)

which gives us the gauge theory description of a single open string ending on a maximal

giant graviton.

wi
j = (w1w2 · · ·wL)ij . (2.5)

Each of the ’bits’ of the open string wi can take on two values Z and W .

Normalization:

To be able to develop a consistent large N expansion one needs to normalize the operators

in a way that lends itself to a well defined large N limit. We shall chose to normalize

the operators by the free-field two point functions. It may be seen by a straightforward

computation that

〈

Z̄N−1(x), w̄(x)|ZN−1(0), w(0)
〉

∼ [(N − 1)!]3NL+1 1

|x|N+L−1
(2.6)

Hence, it is reasonable to normalize the states as

1
√

[(N − 1)!]3NL+1
|ZN−1, w > (2.7)

As mentioned in the introduction, with this normalization one is led immediately to dirich-

let boundary conditions for the open spin chain w. It may be easily verified that if either

w1 or wL is equal to Z, then the state factorizes into a product of a determinant and a

single trace [4, 22]. With our chosen normalization, such a state would turn out to be

sub-leading order in the large N limit. Thus, one has the Dirichlet boundary conditions

that, neither the first or the last impurity fields can be of the Z type.

2.1 The open spin chain

The two loop dilatation operator of N=4 SYM in the su(2) sector is [3]

D = D0 +
λ

N
D1 +

λ2

N2
D2 + O(λ3) (2.8)

where

D0 = tr
(

A†ZAZ + A†W AW

)

(2.9)

D1 = −tr[A†Z , A†W ][AZ , AW ] (2.10)

D2 = tr

(

1

2
[AZ , AW ][A†Z , [AZ , [A†Z , A†W ]]] +

1

2
[AZ , AW ][A†W , [AW , [A†

Z , A†
W ]]]

+ [A†Z , A†W ][AZ , AW ]

)

, (2.11)

and

λ =
g2
YMN

8π2
. (2.12)
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It is understood, that one has mapped the local composite (su(2)) operators to states of

the matrix model Hamiltonian. For example,

Tr(ZZWW · · ·W ) ⇐⇒ Tr(A†ZA†ZA†W · · ·A†W )|0 > . (2.13)

When the dilatation operator acts a giant graviton like state such as |ZN−1, w > the

following possibilities may occur.

(1:) All the annihilation operators of D1 and D2 may act on w.

(2:) Some of the annihilation operators may act on w and others on the Z fields that form

the brane.

In the first instance, one has the standard result that the action of the annihilation operators

on consecutive fields present in w can be interpreted as the action of a quantum spin chain

Hamiltonian on a spin chain state [3, 26]. The action of the annihilation operators on

non-consecutive fields can be shown to be sub-leading order in 1
N

. Such actions always

spit up the spin chain into multiple chains, thus transforming the state with a single string

excitation in the D3 background to one involving multiple open string excitations. Such

states are mutually orthogonal (see [22] for the combinatorial details). Hence they can be

ignored for the purposes of large N computations. The spin chain that results from the

’bulk’ action of the dilatation operators on consecutive fields present in w is the same as

the one that one has in the study of single trace operators [3], only the boundary conditions

are different. As mentioned previously, the boundary conditions consist of the condition

that neither the first or the last fields of the spin chain can be a Z.

When the dilatation operator acts on two Z fields from the brane, the result can be

easily shown to be sub-leading order in 1
N

. However, special care is required to analyze the

result of the action of the dilatation operator on two consecutive fields in w and a single Z

field from the brane. A careful analysis shows that there are no O(1) contributions from

such actions of the dilatation operator. Indeed, all the terms so generated are given below

along with the leading powers of 1
N

by which they are suppressed. In the following list, w1

stands for a single field, w2 represents a generic ’word’ formed out of two fields and wc is

a word of length |w| − 2: |w| being the length of w. The second set of states multiplying

the fifth and lower terms in the table are single trace states which result upon the action

of the dilatation operator on the giant graviton state.

|ZN−2, w1, wcw2 > 1√
N

|ZN−2, w3, wc > 1√
N

|ZN−2, w2, w1wc > 1√
N

|1, ZN−2, w3wc > 1√
N

|1, ZN−2, wc > |w3 > 1√
N

|1, ZN−2, w2wc > |w1 > 1√
N

|1, ZN−2, w1wc > |w2 > 1√
N

|ZN−2, w2, wc > |w1 > 1
N

|1, ZN−2, w2wc > |w1 > 1√
N

|ZN−2, w1, wc > |w2 > 1√
N
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We can now write down the formula for the two loop large N open spin chain. As mentioned

in the preceding discussion the two loop Hamiltonian for the open string sector is the same

as the one for single trace operators, the only thing that is is different is the boundary

condition. To incorporate the boundary conditions in the formula for the Hamiltonian we

shall use the operators Qi(Z), which were introduced in [4]. These operators are defined

by their actions on the spin chain states as foillows:

QZ
i | · · ·Z · · · > = 0

QZ
i | · · ·W · · · > = | · · ·W · · · > . (2.14)

In the above equations, Z,W are located at the ’i’th lattice site. i.e. the operator Qi(Z)

checks if the ’i’th spin is a Z. If it is so then it annihilates the entire state. Using these

operators, the open spin chian Hamiltonian can be written as

H =
J−1
∑

l=1

(1 − 4g)QZ
1 QZ

J (I − Pl,l+1)Q
Z
1 QZ

J

+g

J−2
∑

l−1

QZ
1 QZ

J (I − Pl,l+2)Q
Z
1 QZ

J

To get to the above form, we have divided out the formula for the Hamiltonian by λ and

used

g =
λ

2
. (2.15)

It is of course assumed that the length of the chain is J and the Hamiltonian acts on all

the spin sites. Since the first and the last sites cannot have Z fields, one could write down

the Hamiltonian is a slightly different form as well. We could take a state of the generic

form

|W · · ·W >, (2.16)

where one could have impurity (Z) fields inserted between two W fields. In the previous

formulation, the spin chain included the boundary fields, but we could just as well modify

the definition of the spin chain to include only the fields contained inside the two boundary

W fields, and write the effect of the interaction of the boundary fields with the spin chain

separately. In other words, we shall define the second field of w to be first site of the spin

chain and the penultimate field of w to be the last site. Thought of in this way, the spin

chain Hamiltonian reads as

H =

L−1
∑

l=1

(1 − 4g)(I − Pl,l+1) + g

L−2
∑

l=1

(I − Pl,l+2)

(1 − 4g)qZ
1 + gqZ

2 + (1 − 4g)qZ
L + gqZ

L−1 (2.17)

It is to be understood that

qZ
i = (1 − QZ

i ), (2.18)
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i.e qZ
i checks if the field at the ith site is Z, and if it is so, it acts as the identity operator.

In case this condition is not satisfied, qZ
i annihilates the spin chain. L is now to be regarded

as the effective length of the spin chain i.e the number for fields between the boundary W

fields i.e.

L = |w| − 2. (2.19)

2.2 Bethe ansatz

Let us begin by deriving the one loop Bethe ansatz for the open spin chain. Short ranged

spin chains of the Heisenberg type with various boundary conditions have been solved

using both the coordinate and algebraic Bethe ansatz techniques in the past [27 – 29]. In

the present paper, we shall adhere to the coordinate Bethe ansatz approach as it generalizes

easily to higher loops. In our analysis we shall follow the approach of [27, 28].

The one magnon state |Ψ1 > can be taken to be of the form:

|Ψ1 >=

L
∑

x=1

Ψ(x)|x > . (2.20)

If one takes the state to be a superposition of incoming and outgoing plane waves, with

Ψ(x) = A(k)eikx − A(−k)e−ikx, (2.21)

then it is quite easy to see that the state is an eigenstate of the Hamiltonian with energy

E(k) = 4 sin2

(

k

2

)

. (2.22)

It is also straightforward to verify that for the plane wave state to be an eigenstate, the

following boundary conditions, which are implied by scattering at the boundary, must hold.

Ψ(0) = 0

Ψ(L + 1) = 0. (2.23)

These conditions can also be written down as

α(−k)A(k) − α(k)A(−k) = 0

β(k)A(k) − β(−k)A(−k) = 0. (2.24)

The above conditions lead to the following compatibility condition

α(k)β(k) = α(−k)β(−k) (2.25)

with α, β given by

α(−k) = 1

β(k) = ei(L+1)k. (2.26)
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The solution to the compatibility condition sets the allowed range of values for the momenta

to be

k =
nπ

L + 1
. (2.27)

This is the complete solution to the one magnon scattering problem, which gives us the

one-magnon spectrum(2.22), (2.27) and the boundary scattering matrix A(k)
A(−k) .

Having determined the boundary S matrix by solving the one-magnon problem, one

can now proceed to study the two magnon scattering problem. The two magnon state can

be taken to be of the form

|Ψ2 >=
∑

x<y

Ψ(x, y)|x, y > (2.28)

with

Ψ(x, y) =
∑

p

σ(p)A(ki, k2)e
i(k1x1+k2x2). (2.29)

The above sum is over all permutations and negations (p) of the momenta. σ(p) = ±1 and

it changes sign when the signs of when one of the signs of the moments are changed or

when the momenta are permuted in pairs. This two magnon state is an eigenstate of the

spin chain Hamiltonian provided the following conditions are satisfied.

A(k1, k2)s(k1, k2) − A(k2, k1)s(k2, k1) = 0

A(k1, k2)α(−k1) − A(−k1, k2)α(k1) = 0

A(k1, k2)β(k2) − A(k1,−k2)β(−k2) = 0 (2.30)

In the first equation

s(k1, k2) = 1 − 2eik2 + ei(k1+k2). (2.31)

The three equations above require some explanation. The first of the three equation comes

from the requirement that two body scattering, that takes place when the impurities appear

next to each other, happens in a way such that the state remains an eigenstate of the

Hamiltonian. The other two equations follow from scattering at the boundary, i.e by

considering the scenario that one of the particles is at the boundary and by requiring the

coefficient of this state to be such that it still remain an eigenstate of the Hamiltonian.

In a sense we can see, directly from these equations that the boundary conditions are

compatible with integrability at the one loop level. That follows from the observation that

the boundary scattering equations involve only one of the two momenta. In other words,

the boundary does not introduce any new ’three body’ interactions. For example, if one

considered the special case when the two particles sit next to each other at the boundary,

there could in principle have been potential three body interactions; the third body being

the boundary. However, the above conditions tell us that this is not the case at the one

loop level, and the two boundary equations are all that one needs for all positions of the

second impurity. We shall soon see that this is not the case at the two loop level.

The situation is more transparent in position space. For any pair of well separated

lattice sites away from the boundary,

H|x, y(> x + 1) >= 4|x, y > −|x − 1, y > −|x + 1, y > −|x, y − 1 > −|x, y + 1 > (2.32)
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With the choice of the pane wave ansatz, and this action of the Hamiltonian, it is clear that

the coefficient of |x, y(> x + 1) >, once the Hamiltonian has acted on it, is (4 sin2
(

k2
1

2

)

+

4 sin2
(

k2
2

2

)

)Ψ(x, y). However, for the coefficient of |x, y(= x + 1) > to come out right, one

has to impose the condition

2Ψ(x, x + 1) − Ψ(x + 1, x + 1) − Ψ(x, x) = 0 (2.33)

which leads to the scattering condition; the first equation in (2.30). Once this equation is

satisfied, the effects of the boundary impose the further constraint

Ψ(0, y) = 0

Ψ(x,L + 1) = 0 (2.34)

which translate into the second and third equations in (2.30) respectively. What is notable

is that once the two particle scattering equations are satisfied, for some choice of Ψ(x, y),

the boundary conditions on Ψ(x, y) are the same as the one magnon case. For instance, the

left boundary condition (the first of the two equations above) is the same as the condition

satisfied by Ψ(x) in the one-magnon problem for all values of y. Most importantly, the

special situation when x = 1, y = 2 does not introduce any new conditions on the wave

function. Thus the bulk and boundary scattering problems separate out. This is nothing

but an explicit (and perhaps pedagogical) way of realizing that the boundary conditions

are compatible with integrability of the spin chain.

Having the three equations at out disposal, we can now derive the Bethe equations

that determine the momenta. As in the one magnon case, the Bethe equations are derived

as the compatibility conditions implied by the three equations. Various ways of expressing

A(k1, k2) in terms of A(k2, k1) lead to the requirement [28]

α(k1)β(k1)

α(−k1)β(−k1)
=

S(−k1, k2)

S(k1, k2)
, (2.35)

where

S(k1, k2) = s(k1, k2)s(k2,−k1) (2.36)

There is a similar equation where k1 is replaced by k2 and vice-versa. These results can be

generalized to the case of an arbitrary number of magnons. In the case of m magnons the

Bethe equations read as

α(ki)β(ki)

α(−ki)β(−ki)
=

m
∏

j(6=i)=1

S(−ki, kj)

S(ki, kj)
. (2.37)

3. The two loop analysis

Bethe ansatz for the su(2) open spin chain decribed in the previous section is essentially

implied in the analysis carried out in [4] where the one loop bulk and boundary S matrices of

the full so(6) spin chain were computed. The above analysis reconfirms and reproduces the
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su(2) sector of the results reported in [4]from a coordinate Bethe ansatz point of view and

also sets up the techniques and conventions that will be applied to the two loop analysis,

to which we shall devote the rest of the paper. The two loop large N dilatation operator is

H =
L−1
∑

l=1

(1 − 4g)(I − Pl,l+1) + g
L−2
∑

l=1

(I − Pl,l+2)

(1 − 4g)qZ
1 + gqZ

2 + (1 − 4g)qZ
L + gqZ

L−1. (3.1)

As was the case in the analysis of single trace operators, we do not expect the two loop

spin chain to be exactly integrable. However, in the analysis of closed spin chains, it was

possible to establish a perturbative integrablity of the large N dilatation operator. In

other words, it was possible to construct a Bethe ansatz for the eigenstates of the two loop

Hamiltonian which was accurate to O(g) [8]. It is thus reasonable to examine if the two

loop large N dilatation operator exhibits this perturbative notion of integrability in the

background of giant gravitons.

The method of the perturbative assymptotic Bethe ansatz (PABA) advocated by Stau-

dacher in [8] provides one with a very direct and transparent method for checking whether

or not a given spin chain, whose Hamiltonian can be expressed as a power series in some

coupling constant (in our case g), admits of a Bethe ansatz order by order in perturbation

theory. This method was successfully applied to the study of the mixing of single trace

su(2) operators of the gauge theory up to three loops in perturbation theory. In the sec-

tor of single trace operators, the large N dilatation operator maps to closed spin chains

with periodic boundary conditions. For such spin chains, there are no boundaries, and the

magnons only scatter off each other. Establishing the existence of a PABA for the closed

spin chains thus consists of a two step process.

( 1:) Finding the two body S matrix for two magnon scattering while allowing for the S

matrix to have an appropriate g dependence such that the two magnon Bethe state is an

eigenstate of the Hamiltonian in the perturbative sense mentioned above.

( 2:)Generalizing the two body solution to a solution of the many body problem using

the kind of reasoning used at the end of the previous section, which basically amounts to

assuming factorized scattering for the problem.

For the problem at hand, the only difference between the two loop Hamiltonian (3.1)

and the corresponding spin chains describing the two loop dilatation operator for sin-

gle trace states lies in the boundary conditions and the boundary terms(the second line

in (3.1)). Thus, when the magnons are far away from the boundaries, the scattering be-

tween the magnons is described by the same S matrix that appears in the case of the

closed spin chains, which was already found in [8]. Thus, for the purposes of the present

analysis, we can borrow from [8] the formula for the two loop bulk two magnon scattering

matrix. However, for the present problem, we also need to perform a PABA to account for

the scattering of the magnons from the boundaries i.e compute the boundary scattering

matrix accurate to two loop order. As in the case of the one-loop analysis performed earlier

in the paper, the boundary scattering matrix, will be found by solving the one magnon

problem. To clinch the issue of perturbative integrabilty in analysis of the open spin chain
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would require a demonstration that the Bethe state formed by merging the two asymptotic

solutions is an eigenstate of the Hamiltonian. To put it differently, we shall have to check

that two magnon state that has as the bulk S matrix the one found in [8], and as the

boundary S matrix the appropriate solution of the one magnon problem is an eigenstate of

the Hamiltonian. This unfortunately is not the case. We shall now proceed to substantiate

these comments by explicit computations in the following sections.

3.1 One magnon problem

As in the one-loop case, we shall first compute the boundary S matrix of the spin chain

by solving the one-magnon problem. An important distinction from the one-loop analysis

is that the Bethe wave function is not simply a superposition of plane waves. We shall

also have to allow for some exponential decay of the wave function around the boundaries.

The analysis below can be thought of as the two loop PABA for the one magnon problem.

Although this is ostensibly a one-body problem, the presence of the boundary induces a

two body effect through the interactions of the impurity with the boundary. Just like the

two body problem in Staudacher’s PABA [8] required the introduction of an exponential

decay of the two body wave function for the Bethe ansatz to be consistent, the one magnon

problem in the present analysis requires that the one body wave function be allowed to

have an exponential decay around the boundaries. The Bethe ansatz that incorporates

this requisite feature can be summarized in the following form for the one magnon wave

function:

|Ψ >=

L
∑

x=1

Ψ(x)|x > (3.2)

where

Ψ(x) = A(k)eikx − A(−k)e−ikx + a(k)gx + b(k)gL−x (3.3)

As is evident from the above formula, the third and the fourth terms account for the

exponential decay of the wave function; the strength of the decay being given by the ’t

Hooft coupling constant. To avoid having to write factors involving the momenta, let us

call

A(k)eikx − A(−k)e−ikx = ψ(x)

a(k) = φ(1)

b(k) = φ(L) (3.4)

As in the one loop analysis, when the impurity is sufficiently far away from the boundary

i.e for any 2 < x < L − 2 we have the condition:

(1 − 4g)(2ψ(x) − ψ(x − 1) − ψ(x + 1)) + g(2ψ(x) − ψ(x − 2) − ψ(x + 2)) = EΨ(x) (3.5)

with

E(k) = 4 sin2

(

k

2

)

− 16g sin4

(

k

2

)

= E1(k) + gE2(k). (3.6)

– 14 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
7

Special care is needed to analyze the situations x = 2, 1, L, L − 1. The coefficient of

|x = 2 >, after the action of the Hamiltonian on the Bethe wave function is

(2 − 4g)(2ψ(2) − ψ(1) − ψ(3)) + g(2ψ(2) − ψ(4)) − gφ(1). (3.7)

Thus we have the condition

ψ(0) = φ(1) (3.8)

Similarly, the coefficient of |x = 1 > is

(1 − 4g)(2ψ(1) − ψ(2)) + g(ψ(1) − ψ(3)) + 2gφ(1) (3.9)

This leads to the condition:

(1 − 4g)ψ(0) + gψ(−1) − gψ(1) + 2gφ(1) = gE1(k)φ(1) (3.10)

where E1(k) = 4 sin2
(

k
2

)

. There are similar equations that follow from the scattering at

the right boundary. These equations may be written in a way that is at par with the one

loop equations(2.24) i.e

A(k)α(−k) − A(−k)α(k) = 0

A(k)β(k) − A(−k)β(−k) = 0. (3.11)

α(β) determine the two loop left (right) boundary scattering amplitudes and are given by

α(−k) = (1 − 2g) + ge−ik − geik − gE1(k)

β(k) = eik(L+1)
(

(1 − 2g) + geik − ge−ik − gE1(k)
)

. (3.12)

As at the one loop level, the compatibility conditions α(k)β(k) = α(−k)β(−k) determine

the momenta to be

k =
nπ − θ(k)

L + 1
, (3.13)

where

θ(k) = tan−1

[

2g sin(k)

(1 − 2g) − gE1(k)

]

. (3.14)

It is understood that the expression for θ is to be regarded as an approximate expression

accurate to O(g). θ(k) gives us the two loop correction from the boundary scattering to the

allowed values of momenta. This completes the Bethe ansatz for the one magnon probelm.

3.2 Two magnon problem

Having solved the one magnon problem, we can now analyze the case of two magnons. Once

again, we shall have to propose a Bethe ansatz, that accounts for the exponential decay of

the wave functions when the magnons interact with each other or with the boundary. The

appropriate PABA can be summarized in the following two body wave function

|Ψ >=
∑

x<y

Ψ(x, y)|x, y >=
∑

x<y

ψ(x, y)|x, y > +g
∑

y>1

φ(1, y)|1, y > +g
∑

x<L

φ̃(x,L)|x,L > .

(3.15)
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As in Saudacher’s PABA [8] we shall let ψ(k1, k2) be a superposition of plane waves, with

some exponential decay that takes place when the magnons interact with each other, while

φ, φ̃ will measure the amplitude of decays around the boundaries. More specifically, we

shall have

ψ(x1, x2) =
∑

p

σ(p)ei(k1x1+k2x2)
(

A(k1, k2) + B(k1, k2)g
|x1−x2|

)

. (3.16)

Once again, for two magnons at x1 > 2 and L−2 > x2 > x1 +2, the coefficient of |x1, x2 >

after the action of the Hamiltonian is

(1 − 4g)(4ψ(x1, x2) − ψ(x1 − 1, x2) − ψ(x1 + 1, x2) − ψ(x1, x2 − 1) − ψ(x1, x2 + 1))

+g(4ψ(x1, x2) − ψ(x1 − 2, x2) − ψ(x1 + 2, x2) − ψ(x1, x2 − 2) − ψ(x1, x2 + 2))

= E(k1, k2)ψ(x1, x2) =
∑

i=1,2

(

4 sin2

(

ki

2

)

− 16g sin4

(

ki

2

))

ψ(x1, x2)(3.17)

At the special situation when x2 = x1 + 2, one has the condition

2ψ(x, x + 2) − ψ(x + 2, x + 2) − ψ(x, x) = 0, (3.18)

while when x2 = x1 + 1, one has the condition

g(ψ(x1 + 2, x2) + ψ(x1, x2 − 2) − ψ(x1 − 1, x2 − 1) − ψ(x1 + 1, x2 + 1))

(4g − 1)(2ψ(x1, x2) − ψ(x1 + 1, x2) − ψ(x1, x2 − 1)) = 0 (3.19)

This part of the computation is the same as the PABA for periodic spin chains carried

out by Staudacher in [8]. The above conditions serve to fix the function B(k1, k2) and to

determine the bulk scattering matrix. However the boundary processes have to be treated

separately which we shall now proceed to do. Now, for any x2, the condition obtained from

looking at the coefficient of |2, x2 > is

ψ(0, x2) = φ(1, x2). (3.20)

One also has a similar condition at the right boundary; namely

ψ(x1, L + 1) = φ(x1, L). (3.21)

Furthermore, for any x2 > 2 and x1 < L − 1 the coefficients of |1, x2 > and |x1, L > lead

to following two boundary scattering equations respectively.

A(k1, k2)α(−k1) − A(−k1, k2)α(k1) = 0

A(k1, k2)β(k2) − A(k1,−k2)β(−k2), (3.22)

with α, β given by(3.12). Equations(3.18), (3.19), (3.20), (3.21), (3.22) completely fix all

the undertermined functions in the problem. Indeed, they also lead to the Bethe equations

for the momenta
α(ki)β(ki)

α(−ki)β(−ki)
=

∏

j 6=i

S(−ki, kj)S(kj , ki). (3.23)
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α and β are given by (3.12), while the bulk S matrix is the solution of (3.18), (3.19), (3.20),

(3.21). It is the same as the one presented in [8, 6, 9].

S(p, p′) =
φ(p) − φ(p′) + i

φ(p) − φ(p′) − i
, (3.24)

with the phase shift (thought of as an expression accurate to order λ for the present

problem) being given by

φ(p) =
1

2
cot

(p

2

)

√

1 + 8λ sin2

(

p2

2

)

. (3.25)

This situation is very much at par with what one had at one loop(2.30). The boundary

interactions so far have not introduced any three-body interactions. The effect of the left

(right) boundary scattering on ψ(x1, x2) produces the same algebraic equations satisfied by

ψ(x) in the one magnon problem. Thus in the analysis so far, the boundary has not ’seen’

the second particle. That is not surprising as we have not analyzed the only situation that

can lead to a three body process, which is when both the impurities are near the boundary:

i.e we need to study the coefficient of the state |1, 2 > after the action of the Hamiltonian

on the Bethe wavefunction. This is the only scenario (at this loop order) in which all the

three ’particles’, the two impurities and the boundary can interact with each other. Thus

the spin chain will be perturbatively integrable, if the coefficient of |1, 2 > does not lead

to any new conditions. Unfortunately, that is not the case. It is a straightforward exercise

to see that the coefficient of |1, 2 > leads to the condition

∑

p

σ(p)A(k1, k2)α̃(−k1, k2) = 0, (3.26)

where

α̃(−k1, k2) = eik2

(

(1 − 4g) + g
(

−eik1 + 2e−ik2 + e−ik1 − E1(k1)
))

(3.27)

Similarly, at the right boundary, the coefficient of |L − 1, L > leads to

∑

p

σ(p)A(k1, k2)β̃(k1, k2) = 0, (3.28)

where

β̃(k1, k2) = ei(k1(L−1)+k2(L+1))
(

(1 − 4g) + g(eik2 − e−ik2 + 2eik1 − E1(k2))
)

(3.29)

These are new conditions which imply that the Bethe state is not an eigenstate of the

Hamiltonian even after one finds bulk and boundary S matrices which are solutions of the

two body Schrodinger equations. The presence of both the momenta k1, k2 in boundary

scattering phase shifts α̃, β̃ in the above equations is the signature of three body interactions

that prevent the separation of the scattering matrix into a bulk and a boundary part. The

extra three body interaction coming from the special possibility of both the particles being
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close to the boundary thus shows us that the conventional Bethe ansatz does not quite

work in the case of the present problem.

Though the problem does not appear to be integrable, at least from the PABA point

of view, we can nevertheless use the Bethe equations to construct some exact two particle

eigenstates. This can be carried out by allowing for a linear superposition of the the Bethe

wave functions of the kind discussed above with various values of the momenta. Instead

of(3.15), we can look for a wave function of the type

Ψ(x, y) = Ψ(x, y) + ΓΨ′(x, y) + ∆Ψ′′(x, y), (3.30)

where Ψ′,Ψ′′ have exactly the same functional form as Ψ, but they are chosen to have

different momenta, k′
1, k

′
2, and k′′

1 , k′′
2 respectively. The functions are also chosen to satisfy

the scattering equations(3.18), (3.19), (3.20), (3.21), (3.22). Furthermore, we shall choose

the three pairs of momenta to be related by

∑

i=1,2

E(ki) =
∑

i=1,2

E(k′
i) =

∑

i=1,2

E(k′′
i ) (3.31)

with E(k) given by (3.6). We can now fix the two undertermined functions of the momenta

∆,Γ by requiring the state to be an eigenstate of the Hamiltonian. Clearly, the equations

that need to be satisfied by Γ and ∆ follow from (3.26), (3.28). They are

′
∑

A(k1, k2)α̃(−k1, k2) + Γ

′
∑

(

A(k′
1, k

′
2)α̃(−k′

1, k
′
2)

)

+ ∆

′
∑

(

A(k′′
1 , k′′

2 )α̃(−k′′
1 , k′′

2 )
)

= 0(3.32)

and

′
∑

A(k1, k2)β̃(k1, k2) + Γ
′

∑

(

A(k′
1, k

′
2)β̃(k′

1, k
′
2)

)

+ ∆
′

∑

(

A(k′′
1 , k′′

2 )β̃(k′′
1 , k′′

2 )
)

= 0(3.33)

In the above equations the ’primed’ sums refer to summations over all permutations

and negations of momenta as we have carried out in the rest of the paper; i.e
∑′ ≡

∑

p σ(p).These equations can indeed be solved, allowing us to construct some special eigen-

states of the Hamiltonian. In other words, the two body problem is solvable in a sub-space

of the Hilbert space spanned by the Bethe wavefunctions. In the presence of integrabil-

ity, every Bethe state corresponding to any of the allowed values of momenta determined

by(3.23) would have been an eigenstate of the Hamiltonian. Though that is not the case,

special linear combinations of the Bethe states do still solve the two magnon problem. It is

however not clear to us if the above two body solutions can be utilized to solve the n > 2

magnon problem.

4. Epilogue

The test of integrability carried out in the above analysis differs significantly from the usual

one carried out to determine whether or not particular boundary conditions maintain the

integrability of a given integrable spin chain. One usually declares a spin chain with

open boundary conditions to be integrable if its bulk and boundary S matrices satisfy
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the boundary Yang-Baxter or reflection algebra [29]. This, for example, is the notion of

integrability used in [4] for the open so(6) spin chain. However, it has to be kept in mind

that the S matrices satisfying the reflection algebra is a necessary and not a sufficient

condition for integrability. Moreover, the bulk and boundary S matrices truly become

matrices when the impurities carry some internal degrees of freedom, which is not the

case in the present problem, where the impurity can only be of one kind. The reflection

algebras too, become non-trivial matrix relations only when the scattering matrices describe

particles with internal degrees of freedom, and hence become non-commutative matrices.

In a two component system like the present one, where the scattering matrices are just

numbers depending on the momenta, the reflection equations are trivially satisfied. Thus,

the analysis presented above also gives us a curious example of a situation where the

necessary condition for integrability, namely the associated reflection algebra, is satisfied,

while there does not appear to be a Bethe ansztz for the problem.

It is also instructive to compare the present study with those concerning the Inozemtsev

spin chain. As mentioned before, the two (and three) loop su(2) dilatation operator in the

sector of single trace operators has been shown to be embedded in a particular integrable

long ranged spin chain known as the Inozemtsev spin chain. The Inozemtsev chain has

a free parameter in which the Hamiltonian can be expanded and it is part of a complete

set of commuting charges. It has been shown in [31]that it is possible to fine tune this

free parameter so that up to the three loop order, the su(2) dilatation operator and the

Inozemtsev spin chain become identical. Indeed, this is also the easiest way to establish

perturbative integrability up to the three loop order in the su(2) sector of the gauge theory.

However, the picture changes when one considers non-periodic boundary conditions. To

the best of our knowledge, the only boundary conditions other than the periodic one that

are compatible with the integrability of the Inozemntsev and other Inozemtsev like long

ranged spin chains such as the celebrated Haldane Shastry model are special reflecting

boundary conditions, where the spin chain interacts with its image on the other sides of

the left and right boundaries in very specific ways, see for example [25, 24]. The two loop

(bulk) dilatation operator that we have in the present problem is the same one that arises

in the analysis of the closed spin chains, and thus, it can be embedded in the Inozemtsev

spin chain to this loop order. The boundary conditions in the present problem though

are not of the reflecting type that lead to integrable ’open’ versions of the Inozemtsev or

Haldane Shastry spin chains which can possibly be an explanation for the absence of a

consistent Bethe ansatz for the problem.

As a final observation, it might be worth comparing the present analysis to the one

performed in the context of defect conformal field theories. N =2 defect conformal field

theories are the conjectured gauge theory duals for the open string theory generated by

wrapping a D5 brane on an AdS4 × S2 subspace of AdS5 × S5. For the su(2) sector of

such gauge theories, the open string degrees of freedom are generated by placing quark like

fields at the ends of the spin chain, which result in open/free boundary conditions [32 – 41].

These are different from the boundary conditions that we encountered in the present work,

but they are similar. For such open spin chains, an all loop Bethe ansatz was recently

proposed in [30]. Although, these are two different theories, and it probably does not make
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sense to compare their spectra, one can nevertheless compare the generic structure of the

Bethe equation obtained in that analysis to the obstacles encountered in the present work.

In the Bethe ansatz proposed in [30], the boundary scattering matrix did not have any

dependence on the ’t Hooft coupling of the gauge theory. Although the present analysis

prevents us from writing down a set of Bethe equations of the present problem, we were

able to determine the boundary scattering matrix at the two loop level, and found it to

have a non-trivial dependence on the ’t Hooft coupling. From the present analysis, it

appears that such dependence is a generic feature of boundary scattering for (long-ranged)

open spin chains, in the absence of reflective boundary conditions(see for example [24]).

Thus it might be a reasonable goal to perform an explicit two loop computation for the

su(2) sector of N =2 defect conformal field theories, as there might be hidden surprises

to be uncovered. At the very least, it might be possible to understand their integrability

by studying the relation between the boundary conditions that emerge out of the defect

conformal field theories and the reflecting boundary conditions that have been studied in

the context of long-ranged spin chains like the Haldane-Shastry and Inozemtsev chains in

the past [25, 24].

Thus in summary, the analysis presented in this paper presents some evidence in favor

of a lack of higher loop Bethe ansatz in N =4 SYM when one ventures into the study of

the gauge theory dual of open string like operators. The present analysis of integrability

was carried out in a somewhat unconventional approach. It would perhaps be worthwhile

to carry out a numerical study of the spectrum of the two loop spin chain presented in the

paper along the lines of the involved work done in [10]. The empirical knowledge of the

spectrum can then be used to study whether or not the degeneracies responsible for the

one loop integrability are lifted at two loops and possibly provide a more direct study of

integrable aspects of the problem.
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